Hamilton cycles in 5-connected line graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton cycles in 5-connected line graphs

A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness.

متن کامل

Hamilton cycles in regular 3-connected graphs

This result is best possible for k = 3 since the Petersen graph is a nonhamiltonian, 2-connected, 3-regular graph on 10 vertices. It is essentially best possible for k > 4 since there exist non-hamiltonian, 2-connected, kregular graphs on 3k + 4 vertices for k even, and 3k + 5 vertices for all k. Examples of such graphs are given in [ 1, 3 1. The problem of determining the values of k for which...

متن کامل

Eulerian subgraphs and Hamilton-connected line graphs

Let C(l, k) denote a class of 2-edge-connected graphs of order n such that a graph G ∈ C(l, k) if and only if for every edge cut S ⊆ E(G) with |S| ≤ 3, each component of G − S has order at least n− k l . We prove the following. (1) If G ∈ C(6, 0), then G is supereulerian if and only if G cannot be contracted to K2,3, K2,5 or K2,3(e), where e ∈ E(K2,3) and K2,3(e) stands for a graph obtained fro...

متن کامل

Hamilton cycles in highly connected and expanding graphs

In this paper we prove a sufficient condition for the existence of a Hamilton cycle, which is applicable to a wide variety of graphs, including relatively sparse graphs. In contrast to previous criteria, ours is based on only two properties: one requiring expansion of “small” sets, the other ensuring the existence of an edge between any two disjoint “large” sets. We also discuss applications in...

متن کامل

Hourglasses and Hamilton cycles in 4-connected claw-free graphs

We show that if G is a 4-connected claw-free graph in which every induced hourglass subgraph S contains two non-adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4-connected claw-free, hourglass-free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2012

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2011.09.015